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Abstract Poker. We are currently preparing version 4.1 for re-
lease. A large number of parallel programs have been

Experience from over five years of building nonshared implemented using Poker. Table I lists a few of the
memory parallel programs using the Poker Parallel programs written at the University of Washington.
Programming Environment has positioned us to eval-
uate our approach to defining and developing parallel Table 1: Programs Built Using Poker
programs. This paper presents the more significant
results of our evaluation of Poker. The evaluation is Cholesky decomposition [6] FFT
driving our next effort in parallel programming en- Dynamic programming SIMPLE (41
vironment; many of the results should be sufficiently Matrix multiply (systolic) ADI
general to apply to other related efforts. band matrix multiply SOR

(systolic) Polygon clipping
Vector-matrix multiply WAP (systolic)

1 Introduction Matrix multiply [12] LU-decomposition
(divide & conquer) Transitive closure

The Poker Parallel Programming Environment Topological sort Batcher's sort
[17,18] eases the difficult task of programming par- Conjugate gradient Jacobi iteration
allel computers. Poker's development began in Jan- Sharks & fishes [5] Game of Life
uary 1982; the first public release took place in Oc- Dataflow simulator
tober 1985. To date, over 50 sites-including the Uni- The experiences gained from developing parallel
versity of Massachusetts, the University of CaliforniaSanDigo an Ite Copoaton-av vrsinsofprograms with Poker has given us a chance to eval-
San Diego, and Intel Corporation-have versions of uate the strengths and weakness of the system. The

'This research funded in put by Office of Naval Re- goal of this paper is to present our evaluation, cover-
search Contract N000144K-0264, National Science Founda- ing both conceptual and implementation issues. We
tion Grant CCR-4188 and Ar Force Office of Scientific Re- hope our reflections guide other similar research and
search Contract 88-0023. K. Gates is with the Department of
Applied Mathematics, University of Washington. Seattle, WA development efforts towards more fruitful approaches
98195: P.A. Nelson is with the Computer Science Department, and away from other less promising ones. We focus
Western Washington University, Bellingham, WA 9225. on the most significant points of our complete evalua-

tion. The full evaluation has driven the development
of the requirements for Orca-our new parallel pro-
gramming environment research effort.

Before proceeding, a few details about Poker are in
order.

a Poker focuses on MIMD non-shared memory
message-pasing architectures. Further, the
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environment and programmers assume reliable 2 A Brief Overview of Poker
message passing and reliable processing elements
(PEs); our research is not concerned with fault- A common way to visualize a parallel algorithm is as

tolerance. a finite graph. For example, we usually view the sys-

tolic algorithm for matrix multiplication using a hex-

connected mesh [11], the parallel FFT using a butter-

Poker is based on the assumption that parallel fly graph (31, and the tournament maximum finding

programming is most effective when program- algorithm using a binary tree [14). In these commu-

mers handle parallelism explicitly (16]. Explicit nication graphs, the vertices represent processes and
parallelism has several key benefits. First, for the edges represent the communication channels over
many domains, programmers can develop paral- which information is transferred between processes.
lel solutions to problems more easily than they Poker is an environment that lets programmers de-

can sequential solutiols; for instance, concur- velop their parallel programs using a visual represen-
rent programming languages have made oper- tation of the communication graph as the centerpiece.
ating system design more effective and reliable. Just as this is a natural way to describe parallel pro-
Second, explicit parallelism does not hide execu- grams, it is also a natural way to develop, debug, and
tion costs from the programmer. Third, on the maintain them.
hardware side, explicit parallelism makes it much A Poker program is implemented as a database
easier to create efficient executable code [16]. rather than as a monolithic piece of symbolic text.

The emphasis on explicit parallelism differs from The database contents are defined by three pictures,

other efforts where programmers write sequential a set of program sources, and a table. The Poker pro-

programs and let compilers infer parallelism from grammer creates, manipulates, and sees the program

the program (1,10]. One key argument made in through different views, or synthetic pictures of a spe-

favor of inferring parallelism is that it increases cific type of information about the program. The

the potential for portability. As we discuss later, views that support development of Poker programs

significant progress has been made in porting ex- are closely related to the elements of the database.

plicitly parallel programs. 1. The communcaton graph is specified visually,

using the SWITCH SETTINGS ViEw, and defines
" The original Poker system was developed for a the structure of the computation.

specific architecture-the CHiP [19]. Several ar-

tifacts of this architecture are still visible in the 2. The process definition is specified textually, us-

current system, even though Poker now supports ing conventional editors like EMACS, and de-

a broader class of architectures. fines the computational activity for each of the
separate PEs.

DTIC

" The development of Poker began in early 1982, 3. The process labeling is specified graphically, us-

when the available technology was significantly ing the CODE NAMES VIEW, and defines wcpich \NspEcTEn

less powerful than it is now. Most notice- process each vertex will execute.

ably, workstations were not generally available.

Hence, many of the design and implementation 4. The port name labeling is specified graphically,

decisions that were appropriate then no longer using the PORT NAMES VIEW, and defines the --- -

are. names of the internal edges of the communica- r
tion graph.

* As with many research projects, our current sys- 5. The stream labeling is specified tabularly, using

tern has evolved from the original prototype. the I/O NAMES VIEW, and defines the names of

The prototype was constructed in one summer the dangling edges of the communication graph,

by about a dozen graduate students, and perhaps thus supporting access to data files.

anntber dozen have worked on it since. Hence,

it is no surprise that some of our problems arise Since realistic Poker programs are too large to be

from the lack of structure in the current imple- easily described here, we present a Poker program , k'odes

mentation. that solves an extremely simple problem. ,/or



Example: Evaluate three univariate poly-
nomials whose coefficients are given in three
input streams; each polynomial is to be eval-
uated at a (possibly) different point given in
the input, and the sum of the three results
is to be returned in a (one element) output
stream.

We solve this problem using a master-slave tech-

nique. The master reads the three points at which
to evaluate the polynomials. The master sends the
points to the slaves, each of which in parallel reads in 2 2
a coefficient stream for one of the polynomials, evalu- 1 2
ates it, and returns the result. The master, who waits
while the slaves work, then sums the values and out-
puts the final result. The communication graph has a
master vertex connected to three slave vertices. Each
vertex has g dangling edge for a stream: each slave Figure 1: Switch Setting View
needs an input stream for coefficients, and the master
needs a stream for the output.

In the Switch Settings View (see Figure 1), the
boxes represent PEs and the lines represent datap- 1slave
aths. Using a mouse, the programmer connects PEs
via datapaths by drawing lines between the PE boxes. .14
The small black boxes on the perimeter, which termi-
nate the diagonal lines, are called pads; they represent z
the sources or sinks of input or output streams. The slavM slave
name of the view is a vestige of the CHiP architec-
ture, in which programmable switches selected the
interconnection of the PEs.

Using the Code Names View (see Figure 2), the
programmer assigns process names and parameter
values to windows within each of the boxes. The Figure 2: Code Names View
mastr process is assigned to PE 1,1. It has three
actual parameters (the points at which to evaluate
the polynomials) and communicates with each of the
other processes. The other three processes are in-
stances of slave, each with a single parameter des- Pt t
ignating how many coefficients are to be read. The slavz inVal
diagonal lines around the perimeter indicate which slav3

processes send data to or receive data from streams.
In the Port Names View (see Figure 3), the user

names the datapaths using a representation similar to t
that of the Code Names View; the only difference is inVal inval
that each box contains windows corresponding to the t
eight compass points at which datapaths could con-
nect to the PE. The programmer assigns the names
used in the process definition to refer to the (logi- Figure 3: Port Names View
cally) adjacent processes. The mastr uses the names
slavi, slav2, and slav3 for the slaves and rpt for
the output stream; the slave ports are assigned to E,



in t Nlav.

Figure 4:1/ ae View



SE, and S, while the output port is assigned to NW
(see Figures 6 and 7). Port naming permits different
processes to refer to the same channel with differ- cod, mstr;

trace 11. y2. y3. result;ent names-the ends, not the datapath, are assigned ports rpt, slavl, slav2, slav3;
names.
In the 1O Names View (see Figure 4) the program- aain(it, z2. x3) float xl. z2. z3;

met specifies the stream information for each pad: (
the name of the file on the host operating system, float y. y2, y3, result;
the stream index, and whether the values are to be
read or written. The system provides, as context, slavi <- xl; /, Send point values .I

the destination information to the right of the verti- slav2 <- z2; I- to slave PEs. ./

cal line. slav3 <- z3;

The two text files representing the source code (see yl <- slavi; /. Receive evaluated e/
Figures 6 and 7) of the sequential processes and the y2 <- slav2; / polynomials S
input files (see Figure 8) are defined using conven- y3 <- slav3; I. back. C,

tional techniques. In this example, the source is writ-
ten in the Poker C language. Poker C is conventional, result - yl * y2 + y3;
except for the arrow assignment statements imple- rpt <- result;
menting interprocess communication. The names }
used for the ports declaration correspond to those
mentioned in the Port Names View.

The four views plus the text files constitute a com- F : C
plete Poker program. Programs are converted to ob- code slave;
ject form by compiling and assembling the database trace data. accus, dower;
and processes. The object codes can then be loaded ports mst. inVal;
into a parallel computer or emulator. The execution
of a Poker program can be watched using the Trace main(n) nt n;
View (see Figure 5). As the program runs the current {
values of the variables specified in the trace decla- int i;

ration of the process specification (see Figures 6 and float data, accua, xPower, z;
7) are shown on the screen and highlighted as they
change. This is useful for debugging and for watching accum <- inVal;2 <- seat; '
dataflow patterns (20]. xPoer - 1;

for (i - 2; i <a n; i++) {
data <- inVal;

3 Evaluation dower x;ower * z;
accum * accum + data x iPower;

The Poker program just described provides a frame- I
work for presenting our evaluation. This section mast <- accum;
presents the most fundamental points from our com-
plete evaluation.

Figure 7: Poker C: slave
3.1 Algorithm Decomposition

1.004 ,5.078 .2.953 .

Our example focused on two levels of a Poker pro- 3.590 .13.422 ,0.875
gram. The X-level, represented by the Poker C pro- 6.000 .1.444 ,0
grams for mastr and slave, is for programming the 0.096 ,0 .0
sequential processes. It is conventional, sequential
programming, with the addition of operations to read Figure 8: An Input Stream (file inSequence)
from and write to ports. The Y-level, represented by
the master-slave relationship, is for programming the



communication graph. Visually defining this graph the entire machine between phases.) Although some
is perhaps the most novel feature of the Poker sys- programs benefit from this approach, removing ex-
tern. Together a Y-level graph and a set of X-level traneous synchronization may substantially increase
programs form a phase, corresponding to a logical performance when running on architectures, such as
activity of a parallel algorithm, n-cubes, that iipport complete connectivity [6]. So,

These two levels are not sufficient to solve complex Poker needs a more flexible Z-level synchronization
problems. The polynomial example, for instance, mechanism to support both styles of programs effi-
must be combined with other phases to perform use- ciently.
ful computation. The Z-level supports composing
phases to form a complete program. The composi- 3.2 Visual Programming
tion may be a simple sequential ordering of phases,
such as input, compute, and output, or it may require The Y-level environment is an instance of visual
iteration and conditional checking, often to see if the programming [7]. For documentation and explana-
results have reached sufficient accuracy. tion purposes, visual programming of communication

The conceptual distinction among the X-, Y-, and graphs is an unqualified success. There are two draw-
Z-levels has proven to be a powerful methodological backs. One, creating large graphs by drawing each
tool that encourages effective parallel programming. datapath can be tedious. Two, seeing patterns in
Poker progmarnmers find that physical problems nat- large graphs is difficult due to the number of datap-
urally decompose into independent phases defined by aths and crossings.
graphs, and that these graphs typically are instances These difficulties arise in part because we do not
of one of a small number of graph families such as effectively handle graph families. For instance, rather
binary trees, meshes, and tori. Phases act as inde- than individually building a 3 x 3 mesh, a 4 x 4 mesh,
pendent units of abstraction and execution analogous a 5 x 5 mesh, and so on, one would prefer to build
to procedures in sequential languages. Using the Z- a description to generate these different size meshes.
level language to define the flow of control among the Bailey and Cuny [2] show how graph grammars can
phases increases flexibility in defining programs, in help solve this problem. It is important to solve this
composing phases, and in reusing phases from other problem while retaining the visual benefits. One idea
Poker programs. The three levels also give a high de- we are exploring in Orco is to use programs to effec-
gree of modularity and reusability to Poker programs. tively generate the desired graph families.
Both phases and interconnections are reusable in dif-
ferent Z-level or Y-level programs. Similarly, Poker 33 Program Execution
supports multiple X-level languages, currently XX (a
simple language without procedures) and Poker C, Poker programs can be executed on an actual par-
making it possible to select a language appropriate alel computer, on a strict emulation of a parallel
to the problem at hand. Other X-level languages, computer, or on a high-level simulator, with different
such Lisp, are possible, although none has been im- speed and perhaps different function in each model.
plemented. An emulator behaves exactly as the associated archi-

In Poker, the design and implementation of the Z- tecture, except for the elapsed time; relative costs
level language are extremely rudimentary. Typically, of individual computations are identical. A simu-
the user replaces the Z-level program by interactively lator represents a "generic" parallel computer, but
executing each phase, watching it execute, and then provides no guarantees about the degree to which it
progressing to the next phase. Although far short accurately models any specific architecture.
of a full-scale Z-level language, a textual description Actual computers are fast, but inflexible and costly
of this interaction, along with conditional statements, in real dollars. Alternatively, our high-level simulator
can be fed into Poker. As our programs are becoming uses a light-weight process system to provide speed
more complex and sophisticated, we require a more and versatility at the expense of exact timings. Using
sophisticated Z-level language. the simulator to design and debug has turned out to

Another drawback of the current Z-level is that ex- be a major advantage as it allows the user a great
ecution is required to synchronize at the end of each deal of control over the execution of the program and
phase. (This is in part another artifact of the CHiP access to its run-time state [20]. However, even the
architecture, which changes the interconnection of simulator is not flexible enough to merge easily with a



fully interactive debugger. To achieve this flexibility 3.6 Boundary Conditions
in Orca, we plan to include an interpreter that walks
the internal data structures directly. When a regular communication graph, such as a

mesh, has one or more edges where processor connec-
tions are different from elsewhere in the graph (usu-
ally in the form of dangling communication lines),

3.4 Retargetability and Portability that graph has a boundary condition. We have iden-
tified two types of boundary conditions. In the first,

Snyder and Socha (15] have shown that Poker can I/O boundary conditions, the boundary is actually
be retargetted to produce efficient code for different where data is input and output from the graph. This
types of parallel architectures. Retargetting is poe- type occurs most often in systolic arrays, and is of
sible because Poker assumes little of the underlying interest here because the raw data must often be
architecture: message-passing, MIMD execution, and changed, for example, by padding the data with ze-
an X-level language for the target PEs. For most ar- ros or by adding additional information. The second
chitectures that meet these requirements it is both type of boundary conditions, computational bound-
conceptually easy and reasonable in practice to cre- ary conditions, occurs when edges bound a "computa-
ate efficient code from Poker programs. tional space." In this case there must be some special

Retargetability allows the Poker programmer to code for dealing with the edges that specifies the val-

develop a program independent of the target archi- ues processors on the edge of the space would receive

tecture. The simulator, which has the most flexible if the processors outside the space existed.

debugging support, is generally used to test the pro- Boundary conditions inevitably complicate an al-
gram for its algorithmic correctness. When the pro- gorithm implementation. Boundary conditions are

gram is working, the user can select another back- usually handled in one of several ways. If the values

end, from within Poker, and run the program on needed from the edges are constants or are precom-
the actual parallel computer without changing any putable, the values can be entered as input to the
of the code. The front-end and back-ends use a well- processor array. I/O boundary conditions are often
defined interface language, so it is easy to substitute computed this way. Another possibility is to add pro-
one back-end for another and view the trace of the cessors that compute the values on the boundary and

execution in the same Poker Trace View. send them to the processors on the edge. A third

This program-architecture independence has its possibility is to write special purpose code to han-

e- dle boundary conditions. This code executes only oncosts. Most notably, there is no way to access sp- the edge processors, and calculates the input values,

cial features of the hardware from within Poker. The teed o ceso, n calculate the pteal
ability to specify optimizations for particular target world.
architectures in such a way that the optimizations
could be automatically incorporated into the program The first approach keeps the programmer from

is needed. writing special purpose code. However, it is slower,
as it requires reads and writes on the edge processors
that, in many cases, can be replaced by assignments.
In addition, if the input values are precomputed, it

3.5 Timing Model usually makes more sense to do the computation as
part of the algorithm's execution. Poker supports this

Another major advantage to the simulator is that it approach reasonably well, except for the limitations

uses a timing model for calculating the execution time of the I/O mechanisms mentioned in Section 3.8.
of a Poker program. The user can specify the cost of Using boundary condition processors leads to mod-
Poker C operators, C control structures, and message ularization of the special purpose code. It does, how-
packing, transmittal, and unpacking. While versatile ever, require extra communication, as well as using
enough to simulate different PE architectures, such as up a relatively large number of processors. In Poker,
Transputers, the simulator does not model message it has the additional disadvantage of increasing the
forwarding or other communication costs (8]. Modi- amount of special purpose code. This happens be-
fled versions of the simulator can model costs such as cause getting the data to the boundary condition
the effects of communication co-processors [9]. processors requires that the internal processors must



add extra ports and send statements. A mechanism column contains a stream of data values for one pad
for providing some form of Y-level fanout could help Multiple streams fit side by side in a single file so
solve this problem, as the data used in computing that the i" row has the i element of each stream.
the boundary values is usually the same data that is Data values are of fixed width to allow easy access to
being shared between processors. the values as different PEs consume streams at differ-

Poker gives programmers two ways to place spe- ent rates. This implementation causes two problems:
cial purpose code in the edge processors. The first is files become difficult to handle manually, and PEs
to handle them with X-level statements that execute and pads can only exchange values of fundamental
conditionally based on the PE location. The second types.
option is to use compiler directives to create multi- In Orca, we plan to extend the full power of PE-
ple programs with not quite identical code. The first to-PE communication to include PE-to-pad commu-
approach is simpler for the programmer, but it pro- nication by allowing pads to read/write arrays and
duces bigger and slower programs; since PE memory structures. The user will be able to view and create
is limited and the goal of parallel processing is ef- data files from an [/0 editor similar to a spreadsheet.
ficient execution, this approach is unsatisfactory. In Each column represents a stream and each row an
addition, there is some question whether or not a pro- item in the streams. Cells can contain arbitrary data,
cess should be guaranteed to know its position in the perhaps including functions to generate values. This
graph. The second approach is awkward, produces will simplify I/O programming and provide another
confusing source files with multiple sections of similar debugging tool where the parallel I/O spreadsheet is
code, and unreasonably forces the user to maintain used to watch the consumption and production of I/O
consistency among these variants. This is an area values.
where the environment, with its knowledge of both
the interconnection scheme and the code, could sim-
plify the program, increase reliability, and decrease 3.9 Environment Integration
memory and cycle consumption of the underlying Environmental integration was a key objective in the
PEs. development of Poker. Integration is needed to aid

the user in coping with the large amount of infor-
3.7 Program Database mation in a parallel program. Poker's environment

integrates multiple visual views to provide the user
The visual, tabular, and textual views that represent with a consistent and unified interface for visual pro-
a Poker program are also used when storing the pro- gramming and execution. This consistency, based
grams. We store the information in a database, with on the communication graph, is a major advantage
a separate portion for the information from each of in programming and viewing the execution of Poker
the views. Keeping these parts separate and hay- programs. The environment also gathers information
ing the views or compiler merge them as necessary from the program database and the converting this
is conceptually clean, especially for views that need information into executables for a range of parallel
only partial information, simulators, emulators, and actual machines. Finally,

Poker's implementation does not use a true the environment automatically starts and controls
database, which decreases the conceptual clarity and the execution of the program, providing the same in-
usability of the environment itself. The program terface for all of the back-ends.
parts are in separate files and the definitions of the Figure 9 shows the coarse structure of the parts
access routines are scattered throughout Poker. The of the Poker environment. The environment knows
user must ensure that the database is not corrupted. about everything above the dashed line. The pro-

grammer uses the views of the front-end to define
3.8 1/O the program (which is stored in a database), com-

pile it, and trace it. A filled circle indicates read-
Messages to and from I/O pads may contain bool, write access: an open circle is read-only. The envi-
char, int, and float values. This contrasts with ronment compiles the database into code for any of
messages between PEs which may contain arrays and the back-ends on the right. During execution. con-
structures as well. This restriction on I/O arises be- trol and trace messages flow between the front-end
cause of the way we store data streams in files. Each and back-end.
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